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Abstract

Many important double-quantum recoupling techniques in solid-state NMR are classified as being c-encoded. This means that the
phase of the double-quantum effective Hamiltonian, but not its amplitude, depends on the third Euler angle defining the orientation
of the molecular spin system in the frame of the magic-angle-spinning rotor. In this paper, we provide closed analytical solutions for
the dependence of the powder-average double-quantum-filtered signal on the recoupling times, within the average Hamiltonian approxi-
mation for c-encoded pulse sequences. The validity of the analytical solutions is tested by numerical simulations. The internuclear dis-
tance in a 13C2-labelled retinal is estimated by fitting the analytical curves to experimental double-quantum data.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Solid-state NMR is one of the most powerful experi-
mental methods for addressing molecular structural prob-
lems, especially for insoluble or poorly crystalline
systems. Many applications of solid-state NMR in poly-
crystalline or disordered materials employ a combination
of methods: (i) magic-angle sample spinning [1,2] for
improving resolution and sensitivity, (ii) cross-polarization
[3,4] (CP) to enhance the NMR signals from weakly mag-
netic nuclear isotopes, and (iii) recoupling techniques
[5–22] to reintroduce informative nuclear spin interactions
which are averaged out by MAS.

Recoupling sequences employ radiofrequency pulse
sequences which are synchronized with the sample rota-
tion, in order to impede the averaging effect of the mag-
ic-angle-spinning on selected nuclear spin interactions.
The through-space dipole–dipole coupling is usually the
target of recoupling sequences, since this coupling
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encodes important geometric information through its
dependence on the inverse cube of the internuclear dis-
tance [5–20]. The chemical shift anisotropy [21], or a
combination of interactions [1,22] may also be recoupled.
The design of recoupling pulse sequences is facilitated by
the use of symmetry theory [7–20].

In most cases, the magnitude of a recoupled spin interac-
tion depends on the relative orientation of the local molecu-
lar environment and the sample holder. It is convenient to
discuss this dependence using the Euler angle triplet
XMR = {aMR, bMR, cMR} which defines the relative orienta-
tion of a reference frame M which is fixed with respect to the
molecular framework, and a reference frame R fixed with
respect to the rotating sample holder. The z-axis of frame
R is defined to be along the sample rotation axis. In a disor-
dered sample, the three Euler angles XMR = {aMR, bMR,
cMR} are random, isotropically distributed variables. This
paper uses the notation and conventions for Euler angles
and reference frames given in Ref. [11].

In general, a recoupling sequence leads to a first-order
average Hamiltonian for a recoupled interaction K of the
following form:
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H
ð1Þ
K ¼ xK

klðXMRÞT K
kl þ xK

klðXMRÞ�T K
k�l ð1Þ
where T K
kl is a spherical tensor operator of rank k and com-

ponent index l, defined with respect to rotations of the res-
onant nuclear spins. The rank k and component index l
depend on the nature of the recoupling pulse sequence.
For example, double-quantum dipolar recoupling
[5–9,17,18] has k = 2 and l = 2; zero-quantum homonucle-
ar dipolar recoupling [13,15] has k = 2 and l = 0. Hetero-
nuclear dipolar recoupling of the REDOR type [23,24] has
k = 1 and l = 0.

The amplitude of the recoupled interaction is given by
the complex number xK

k lðXMRÞ, which depends on the ori-
entation XMR. The form of this orientation-dependence
also depends on the recoupling sequence. In general, both
the magnitude and the phase of the amplitude xK

kl depends
on any combination of the three angles XMR = {aMR, bMR,
cMR}. However, for an important class of recoupling
sequences, the recoupling amplitude has the form:

xK
klðXMRÞ ¼ jxK

klðaMR; bMRÞjei/K
klðcMRÞ ð2Þ
where the phase angle /K
kl is a function of the single Euler

angle cMR, while the magnitude jxK
klj is independent of

cMR. Pulse sequences which generate average Hamiltonians
obeying Eq. (2) are termed c-encoded [6]. Examples of c-en-
coded recoupling phenomena include rotational resonance
[25,26], homonuclear rotary resonance (HORROR) [6],
and a range of symmetry-based recoupling sequences [7–
20], including C7 [7] and POST-C7 [8]. Recoupling sequences
which are not c-encoded include REDOR [23,24], TEDOR
[27], DRAMA [5], RFDR [28], and some supercycled
symmetry-based recoupling sequences such as SR26 [17].

The attribute of c-encoding provides both advantages
and disadvantages. In general, the reduced orientation-de-
pendence of c-encoded pulse sequences leads to stronger
oscillations of the NMR signal as a function of the recou-
pling interval, which allows a more accurate determination
of the recoupled interaction magnitude. In the case of
double-quantum recoupling, the maximum achievable
double-quantum-filtering efficiency in powder samples is
significantly higher for c-encoded sequences than for non-
c-encoded sequences. In addition, c-encoded sequences
allow a finer time-resolution of the recoupling intervals
compared to non-c-encoded sequences [20]. On the other
hand, c-encoded sequences tend to be less robust at long
times compared to non-c-encoded sequences [17].

The orientation-dependence of the recoupling sequence
leads to an orientation-dependent NMR signal. Consider
an NMR experiment involving a recoupling sequence of
duration s. The powder-average NMR signal is an orienta-
tional average of the form:

hsðsÞi¼ ð8p2Þ�1

Z 2p

0

daMR

Z p

0

dbMR

Z 2p

0

dcMR sinbMRsðs;XMRÞ

ð3Þ
where the form of s(s,XMR) depends on the recoupling
sequence, the orientational angles XMR, and the experimen-
tal protocol, as discussed below. Average Hamiltonian
theory often provides a closed analytical expression for
the signal from a given molecular orientation, s(s,XMR),
under suitable approximations. In some cases, closed
analytical expressions are also available for the powder
average signal in Eq. (3). Such analytical solutions are very
useful for molecular structural studies since they allow a
rapid fitting of the experimental data to structural con-
straints. For example, analytical formulae based on quar-
ter-integer-order Bessel functions were derived by Mueller
for the case of the REDOR dephasing curve [29–31]. Sim-
ilar functions were derived for the case of the non-c-encod-
ed supercycled SR26 sequence [17]. These analytical
solutions were essential for the structure determination of
network solids by double-quantum 29Si NMR, since in that
case many thousands of structural models were tested by
comparison of theory and experiment [32,33].

In the case of pulse sequences including REDOR [23,24]
and SR26 [17], which are not c-encoded, a suitable choice
of reference frame reduces the triple integral in Eq. (3) to
a double integral over the angles bMR and cMR. As shown
by Mueller [29–31], this double integral may be expressed
as a closed expression involving quarter-integer-order Bes-
sel functions. The analytical expressions may be evaluated
very rapidly, allowing the rapid fitting of molecular struc-
ture parameters.

In the case of c-encoded sequences such as C7 [7], under
the specific experimental protocols discussed below, the
powder-average double-quantum-filtered NMR signal
may be reduced to a single integral over the angle bMR.
Although this single integral is superficially simpler than
the double integral required for non-c-encoded sequences,
a closed analytical form for the powder average c-encoded
signal has not been available, although an expression
involving an infinite Bessel series has been reported [29].
The lack of a closed analytical form has impeded the appli-
cation of c-encoded recoupling sequences in iterative
molecular structure determination protocols.

In this paper, we provide closed solutions for powder-
average c-encoded NMR signals in terms of Fresnel func-
tions. We compare the Fresnel solutions with numerical
simulations, examining the effect of chemical shift anisotro-
py and rf inhomogeneity in typical experimental regimes.
We show that the analytical solutions may be used to
extract molecular structure information rapidly and reli-
ably from experimental double-quantum 13C data.

2. Pulse sequences

2.1. Symmetry-based recoupling

The principles of symmetry-based recoupling sequences
have been described in many other places [7–20] and need
only be summarized briefly here. There are two major clas-
ses of symmetry-based recoupling sequence, denoted CN m

n
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Fig. 1. Double-quantum recoupling pulse sequence for a rare spin species
S, including cross-polarization from an abundant spin species I. The
shaded pulse sequence elements are given a phase cycle in order to select
S-spin signals passing through double-quantum coherences at the
indicated time point. The figure illustrates the implementation of a RN m

n

pulse sequence based on a broadband R0 element.
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and RN m
n. A pulse sequence with the symmetry CN m

n or RN m
n

is composed of N elements {e0e1. . . eN�1}, each of which
has the same duration sE = nsr/N, where sr is a period of
the magic-angle sample rotation, sr = j2p/xr, and the angu-
lar spinning frequency is xr. In the case of CN m

n sequences
[7–13], the elements are derived from a basic element C0

by an incremental phase shift:

eq ¼ C0
2pqm=N ð4Þ

In the case of RN m
n sequences [14–19], the phases alternate

between two values:

eq ¼
R0

pm=N ðq evenÞ
R00
�pm=N ðq oddÞ

(

where the prime indicates that all phases internal to the ba-
sic element R0 are changed in sign, and a subscript indi-
cates an overall phase shift. Sequences with the symmetry
CN m

n are based on an element C0 which must be a rf cycle
(propagator proportional to the identity operator);
sequences with the symmetry RN m

n are based on an inversion

element R0 which provides a rotation through an odd mul-
tiple of p about the rotating-frame x-axis.

The integers N, n and m are called symmetry numbers and
control the recoupling properties of the pulse sequence
through the following selection rules on the first-order aver-
age Hamiltonian:

H
ð1Þ
‘mklðCN m

nÞ ¼ 0 if mn� lm 6¼ N ð5Þ

and

H
ð1Þ
‘mklðRN m

nÞ ¼ 0 if mn� lm 6¼ 1
2
NZk ð6Þ

where Zk is an integer with the same parity as k. The quantum
numbers {‘, m, k, l} characterize the rotational properties of
an individual spin interaction term: the ‘‘space’’ rotational
properties are characterized by a rank ‘ and component in-
dex m 2 {�‘,�‘ + 1, . . . ,‘}. The ‘‘spin’’ rotational proper-
ties are characterized by a rank k and component
l 2 {�k,�k + 1, . . . ,k}. The various nuclear spin interac-
tions are distinguished by the values of ‘ and k: For homonu-
clear dipole–dipole interactions, {‘,k} = {2,2}; for isotropic
chemical shifts, {‘,k} = {0,1}; for chemical shift anisotro-
pies, {‘,k} = {2,1}. The selection rules Eqs. (5) and (6)
may be used to select the appropriate symmetry class (CN m

n

or RN m
n) and symmetry numbers {N, n, m} for a given recou-

pling task.

2.2. c-Encoded double-quantum recoupling

In this article, we are mainly concerned with c-encoded
homonuclear double-quantum recoupling sequences, which
have the following properties:

1. All terms H
ð1Þ
‘mkl with l „ ±2 vanish;

2. There is only one symmetry-allowed term of the form

H
ð1Þ
2m22, and only one symmetry-allowed term of the form

H
ð1Þ
2m2�2.
The latter condition ensures a one-to-one correspondence
between the symmetry-allowed spin and spatial compo-
nents, which is the essence of c-encoding. There are there-
fore four types of c-encoded double-quantum recoupling
sequences:

1. Sequences providing symmetry-allowed terms of the
form H

ð1Þ
2�12�2.

2. Sequences providing symmetry-allowed terms of the
form H

ð1Þ
2�12�2.

3. Sequences providing symmetry-allowed terms of the
form H

ð1Þ
2�22�2.

4. Sequences providing symmetry-allowed terms of the
form H

ð1Þ
2�22�2.

The first and second types are called m = 1 double-quantum

recoupling sequences. The third and fourth types are called
m = 2 double-quantum recoupling sequences.

Tables of symmetry numbers for implementing the two
main classes of c-encoded double-quantum recoupling are
provided in ref.20. Examples of m = 1 double-quantum
recoupling symmetries are C71

2, R146
2, R209

2 and R2611
4

[7,14,16–18]. Examples of m = 2 double-quantum recou-
pling symmetries are C83

1 and C81
3 [20].
2.3. Double-quantum filtering

A typical radiofrequency pulse sequence, suitable for the
13C spectroscopy of 13C-labelled organic materials, is
shown in Fig. 1.

A ramped cross-polarization (CP) block [34] is used to
enhance the transverse magnetization of the S-spin species
(usually 13C). A p/2 pulse, phase-shifted by p/2, rotates
the 13C transverse magnetization to the longitudinal direc-
tion. A double-quantum recoupling sequence is applied
for an interval sexc in order to transform the enhanced
longitudinal magnetization into double-quantum
coherence. A second recoupling sequence of duration srec,
followed by another p/2 pulse, transforms the
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double-quantum coherence into observable transverse
magnetization. In suitable cases, the heteronuclear decou-
pler field may be turned off during the double-quantum
recoupling intervals [12,19]. Standard phase-cycling [35]
of the shaded pulse sequence elements is used to suppress
NMR signals that did not pass through double-quantum
coherence at the end of the interval sexc. This is called
double-quantum filtering (DQF).

The dipole–dipole coupling between nuclear spins
may be estimated by acquiring double-quantum-filtered
NMR signals as a function of the intervals sexc and srec.
Two protocols are commonly used [16]: in the symmet-

ric protocol, the two intervals sexc and srec are both
incremented but kept equal to each other. In the asym-
metric protocol, one of the two intervals is kept fixed
(usually srec) while the other is incremented. The asym-
metric protocol leads to higher dynamic range in the
dipolar oscillations, while the symmetric protocol does
not require a prior estimate of the dipole–dipole cou-
pling constant [16].
3. Theory

3.1. Average Hamiltonian

The average Hamiltonian theory [36] of symmetry-based
double-quantum recoupling sequences leads to the follow-
ing first-order average Hamiltonian, for the case of isolated
pairs of spins-1/2, Ij and Ik:

Hð1ÞðXMR; t0Þ ¼ xjkðXMR; t0ÞT jk
2;2 þ x�jkðXMR; t0ÞT jk

2;�2

þ 2pJ jkIj � Ik ð7Þ

where the spherical tensor operators are given by
T jk

2;�2 ¼ 1
2
I�j I�k . Here t0 is the time point at which the recou-

pling sequence is initiated and Jjk is the scalar coupling
constant between j and k.

For simplicity, we choose the molecular reference frame
M to coincide with the principal axis frame of the Ij-Ik

dipole–dipole interaction. For a c-encoded recoupling
sequence, the symmetry-allowed average Hamiltonian
terms have quantum numbers {‘,m,k,l} = {2,±m, 2,±2},
where the value of m depends on the pulse sequence sym-
metry (for C71

2m ¼ þ1, while for R146
2, R209

2, R2611
4 , etc.,

m = �1). In general, the recoupled double-quantum
dipole–dipole interaction has the following amplitude:

xjkðXMR; t0Þ ¼
ffiffiffi
6
p

bjkj2m22D2
0mðXMRÞe�imða0

RL
�xr t0Þ

¼
ffiffiffi
6
p

bjkj2m22d2
0mðbMRÞe�imðcMRþa0

RL
�xr t0Þ ð8Þ

where d2
0mðbMRÞ is a reduced Wigner matrix element, and

j2m22 is the scaling factor for the recoupled term, which
depends on the details of the basic element. The dipole–
dipole coupling constant is given by bjk ¼ �ðl0=4pÞc2�hr�3

jk

where rjk is the internuclear distance, neglecting molecular
motion. Eq. (8) contains the essential properties of
c-encoding (the phase, but not the amplitude, of xjk de-
pends on the angle cMR).
3.2. Double-quantum-filtered signal

The double-quantum-filtered signal amplitude for the
pulse sequence in Fig. 1 is given by

fDQðsexc; srecÞ ¼ fþ2ðsexc; srecÞ þ f�2ðsexc; srecÞ ð9Þ

with:

f�2ðsexc; srecÞ ¼ ðIzIzÞ�2hðIzjU recI�j I�k U yrecÞðI�j I�k jU excIzU yexcÞi
ð10Þ

where the total longitudinal angular momentum operator is
Iz = Ijz + Ikz and the scalar product in operator space [37] is
defined by (AjB) = Tr{A�B}. The angular brackets denote
an average over all molecular orientations. The propagators
for the excitation and reconversion sequences are given by

U exc� expf�iUexcIzgexpf�iHð1ÞðXMR; t0
excÞsexcgexpfþiUexcIzg

U rec� expf�iUrecIzgexpf�iHð1ÞðXMR; t0
recÞsrecgexpfþiUrecIzg

ð11Þ

where ft0
exc; t

0
recg are the starting time points of the excita-

tion and reconversion sequences, and {Uexc, Urec} are the
overall radiofrequency phases.

In the case of CN m
n sequences, the timings and the phases

are correlated with each other so that [20]

mxrt0
exc � 2Uexc þ p ¼ mxrt0

rec � 2Urec for CN m
n sequences

ð12Þ

In the case of RN m
n sequences, a simpler relationship applies:

�2Uexc þ p ¼ �2Urec for RN m
n sequences ð13Þ

These phase-time relationships ensure compatible double-
quantum excitation and reconversion processes, even for
incomplete recoupling cycles. This property allows a fine
time-resolution of the excitation and reconversion sequenc-
es, which is one of the special advantages of c-encoded
sequences [20]. If the phase-time relationships are satisfied,
Eq. (10) may be written:

f�2ðsexc; srecÞ ¼ �ðIzjIzÞ�2hðIzjU 0
recI
�
j I�k U 0y

recÞ
� ðI�j I�k jU 0

excIzU 0y
excÞi ð14Þ

where

U 0
exc � expf�iHð1ÞðXMR; t0Þsexcg

U 0
rec � expf�iHð1ÞðXMR; t0Þsrecg ð15Þ

and t0 is a common time origin for the entire pulse
sequence.

Define a set of three double-quantum operators as
follows:
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IDQ
x ¼ 1

2
ðIþj Iþk þ Iþj I�k Þ

IDQ
y ¼ 1

2i
ðIþj Iþk � Iþj I�k Þ

IDQ
z ¼ 1

2
Iz ð16Þ

These operators cyclically commute:

½IDQ
x ; IDQ

y 	 ¼ iIDQ
z ðcyclicÞ ð17Þ

The average Hamiltonian in Eq. (7) may be written:

Hð1ÞðXMR; t0Þ ¼ jxjkðbMRÞj expf�i/DQIDQ
z gIDQ

x

� expfþi/DQIDQ
z g þ 2pJ jkIj � Ik ð18Þ

where the complex amplitude of the recoupled double-
quantum interaction is given by

xjkðbMRÞ ¼ jxjkðbMRÞj expf�i/DQg ð19Þ

and the phase angle is given by

/DQ ¼ argfj2m22g � mcMR � ma0
RL þ mxrt0 ð20Þ

This conforms to the c-encoding property in Eq. (2). Since
the double-quantum operators commute with the J-cou-
pling term, the transformation of z-angular momentum
by the excitation sequence is given by

UðsexcÞIDQ
z UðsexcÞ ¼ cosðjxjkjsexcÞIDQ

z

þ sinðjxjkjsexcÞ expf�i/DQIDQ
z gIDQ

y

expfþi/DQIDQ
z g ð21Þ

and hence

ðI�j I�k jU 0
excIzU 0y

excÞ ¼ �i sinðjxjkjsexcÞ expf�i/DQg ð22Þ

Similarly,

ðIzjU 0
recI
�
j I�k U 0y

recÞ ¼ �i sinðjxjkjsexcÞ expf�i/DQg ð23Þ

The powder-average double-quantum-filtering efficiency is
therefore given by

fDQðsexc; srecÞ ffi hsinðjxjkjsexcÞ sinðjxjkjsrecÞi ð24Þ

This signal is dependent on the value of m for the recoupled
double-quantum term. The expressions for the relevant
Wigner matrix elements are:

d2
0;�2ðbÞ ¼

ffiffiffi
3

8

r
sin2 b

d2
0;�1ðbÞ ¼ �

ffiffiffi
3

8

r
sin 2b ð25Þ

The double-quantum-filtered signal amplitude may there-
fore be written:

fDQðsexc; srecÞ ffi F DQðhexc; hrecÞ ð26Þ

where the angles hexc and hrec are defined by

hexc ¼ 3
2
jj2m22jbjksexc

hrec ¼ 3
2
jj2m22jbjksrec ð27Þ

and the function FDQ is given by:
F DQðhexc; hrecÞ

¼
hsinðhexc sinð2bMRÞÞ sinðhrec sinð2bMRÞÞi for m ¼ �1

hsinðhexc sin2 bMRÞ sinðhrec sin2 bMRÞi for m ¼ �2

�
ð28Þ

The function FDQ has a ‘‘universal’’ form, which is inde-
pendent of the dipole–dipole coupling and the pulse se-
quence scaling factor.

Since the double-quantum-filtered signal is independent
of the angles aMR and cMR, the orientational averages in
Eq. (28) may be written in terms of single integrals over
bMR:

F DQðhexc;hrecÞ

¼
1
2

R p
0

dbMR sinbMR sinðhexc sinð2bMRÞÞsinðhrec sinð2bMRÞÞ for m¼�1

1
2

R p
0

dbMR sinbMR sinðhexc sin2 bMRÞsinðhrec sin2 bMRÞ for m¼�2

(

ð29Þ
4. Analytical solutions

Special cases of Eq. (29) have been solved by Mueller
et al. [29–31], using Bessel functions [38]. However, the
solutions achieved were not in a closed form. Here, we
report closed-form solutions in terms of Fresnel functions
[39], obtained with the help of Mathematica version 5.2
[40].

After several manual substitutions of variables, Math-
ematica finds the following solution for Eq. (29):

F DQðhexc; hrecÞ ¼
1

2xD
ðF cðxDÞ cosðhDÞ þ F sðxDÞ sinðhDÞÞ

� 1

2xR
ðF cðxRÞ cosðhRÞ þ F sðxRÞ sinðhRÞÞ

ð30Þ

where

hD ¼ hexc � hrec

hR ¼ hexc þ hrec ð31Þ

and

xD ¼
2hD

p

� �1=2

xR ¼
2hR

p

� �1=2

ð32Þ

Here Fc(x) is the Fresnel cosine integral [39], given by:

F cðxÞ ¼
Z x

0

cos
py2

2

� �
dy ð33Þ

while Fs(x) is the Fresnel sine integral, given by:

F sðxÞ ¼
Z x

0

sin
py2

2

� �
dy ð34Þ

The expressions in Eq. (30) resemble those given many
years ago by Look et al., for the free-induction-decay



70 G. Pileio et al. / Journal of Magnetic Resonance 186 (2007) 65–74
generated by randomly oriented spin-1/2 pairs in a static
solid [41].

Surprisingly, the analytical solution of Eq. (30) is exactly
the same for m = ±1 and m = ±2 double-quantum recou-
pling, corresponding to the two versions of the double-
quantum-filtered signal given in Eq. (29). So far, a deeper
reason for the identity of these two results has not been
discovered.

A contour plot of the function FDQ(hexc,hrec) against the
excitation and reconversion time variables is shown in
Fig. 2a. This shows characteristic strong oscillations which
may be used to determine the dipole–dipole coupling con-
stant. The highest amplitudes are observed along the diag-
onal (hexc = hrec), with a global maximum of 0.733 at
hexc = hrec = 0. 602p. Strong negative double-quantum-
a

b

c

Fig. 2. (a) Contour plot of the universal DQF amplitude function
FDQ(hexc, hrec) as a function of the angles hexc and hrec. (b) Symmetric DQF
function F symm

DQ ðhÞ as given in Eq. (36). This corresponds to a diagonal
section through the contour plot in (a) (dashed line). (c) DQF amplitude
function FDQ(hexc,hrec) as a function of hexc, with hrec fixed to the value
hrec = 0.602p. This corresponds to a section through the contour plot in
(a) along the white line. Note the large dynamic range in the oscillations.
filtered amplitudes are observed off the diagonal. The glob-
al minimum is �0.398 which is found at {hexc,hrec} =
{0.513p,1.716p}.

4.1. Symmetric protocol

In the symmetric protocol [16], the intervals sexc and srec

are incremented simultaneously (sexc = srec = s). The dou-
ble-quantum-filtered signal amplitude is given by
F symm

DQ ðhÞ ¼ F DQðh; hÞ where

h ¼ 3
2
jj2m22jbjks ð35Þ

In this case, the analytical solution simplifies to the follow-
ing form:

F symm
DQ ðhÞ ¼

1

2
� 1

x
ffiffiffi
8
p F cðx

ffiffiffi
2
p
Þ cos 2hþ F sðx

ffiffiffi
2
p
Þ sin 2h

� �
ð36Þ

where

x ¼ 2h
p

� �1=2

ð37Þ

A plot of Eq. (36) is shown in Fig. 2b, and displays the
familiar oscillations with a maximum value of 73%,
reached for a recoupling interval corresponding to
h = 0.602p = 108.3�. The symmetric acquisition protocol
corresponds to a diagonal section through the contour plot
of FDQ(hexc,hrec), as shown by the dashed line in Fig. 2a.

4.2. Asymmetric protocol

In the asymmetric protocol [16], one of the two intervals
sexc and srec is kept fixed, while the other is incremented.
The relevant modulation function may be expressed in uni-
versal form by using the angles hexc and hrec, as defined in
Eq. (27). The asymmetric acquisition protocol corresponds
to a section through a plot of FDQ(hexc,hrec), parallel to one
of the axes. One such section is illustrated in Fig. 2c, which
corresponds to the case where the angle hexc is varied, while
hrec is fixed at the value 0.602p. This section corresponds to
the white line in Fig. 2a and provides a particularly large
dynamic range in the dipolar oscillations.

5. Numerical simulations

The analytical solutions were validated by comparisons
with accurate numerical simulations of the spin dynamics
using realistic parameters. The simulations shown in Figs.
3 and 4 used the spin system parameters defined in Table
1, which are typical for the 13C-labelled retinals used in ret-
inal protein studies. Unless stated otherwise, the simulated
magnetic field strength was 9.4 T, and the simulated spin-
ning frequency was 11.000 kHz. The simulated recoupling
sequence had the symmetry R209

2, using the basic element
R0 ¼ 900270180 [19]. All simulations used the symmetric
incrementation protocol and were performed using SIMP-
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SON software [42]. The powder averages were calculated
using 256 orientations, selected according to the REPUL-
SION algorithm [43].
The solid black lines in all frames of Fig. 3 represent the
symmetric analytical solution F symm

DQ ðhÞ of Eq. (36), where
the argument h is related to the recoupling interval h
through Eq. (35). The dipole–dipole coupling constant bjk

is specified in Table 1. The scaling factor was calculated
using the method of Brinkmann et al. [11] for the symmetry
R209

2 and basic element R0 ¼ 900270180, and has the magni-
tude jj2 � 122j = 0.1743.

Fig. 3a compares the analytical solution (black) with a
numerical simulation using the parameters given in Table
1, except for the chemical shift anisotropies, which were
all set to zero (grey). The agreement is excellent in this ide-
alized case.

In Fig. 3b, the analytical solution (black) is compared
with a series of numerical simulations in which the chem-
ical shift anisotropies are increased from 50 to 320 ppm
for one site and from 30 to 300 ppm for the other, with
the principal axis orientations fixed to the values speci-
fied in Table 1. Although the analytical and numerical
results start to deviate at high chemical shift anisotro-
pies, the positions of the maxima and minima do not
vary significantly.

In Fig. 3c, the chemical shift principal values are fixed at
the values in Table 1, but the principal axis orientations are
randomized in a series of 30 simulations. The agreement
between analytical and numerical results is good in all
cases.

Fig. 3d explores the role of spinning frequency.
Seven different simulations were performed for
spinning frequencies xr/2p taking values {3.000,
6.000,9.000, . . . , 21.000} kHz. In each case the rf nutation
frequency was equal to 10 times the spinning frequency.
The plots in Fig. 3d show little dependence on spinning fre-
quency, except at the lowest spinning frequency, where the
rf field is too small to dominate the chemical shift
anisotropy.

Fig. 4a compares the analytical formula (black) with
simulations at a fixed spinning frequency of 11.000 kHz,
using a range of rf field nutation frequencies xnut, centred
around the nominal nutation frequency of
x0

nut=2p ¼ 110:0kHz. In this case there are noticeable devi-
ations in the oscillation frequency of the curves as the rf
field deviates from the nominal value. In order to assess
the influence of rf field variations on the accuracy of the
estimated dipolar coupling, we fitted each simulated curve
in Fig. 4a to the analytical function F symm

DQ ðhÞ, allowing the
dipolar coupling to vary. The estimated dipolar couplings
best(xnut) for each nutation frequency are plotted against
the simulated nutation frequencies xnut in Fig. 4b. There
is a linear dependence of the estimated dipolar coupling
on the simulated nutation frequency, over the plotted
range. A set of points with coordinates ðbestb;xnutx0

nutÞ,
where b is the true dipolar coupling, fall close to a straight
line with a slope of 1.01. This indicates that a 1% error in
the rf field value leads to a �1% error in the dipolar cou-
pling estimate, and hence a �0.3% error in the estimate
of the internuclear distance.



Table 1
Spin system parameters used in the numerical simulations

Parameter Meaning Value

ðdiso
j ; diso

k Þ Isotropic chemical shifts (�0.05 ppm, +0.05 ppm)

ðdaniso
j ; daniso

k Þ Chemical shift anisotropies (�101.5 ppm, 81.7 ppm)
(gj,gk) Shift tensor biaxialities (0.78,0.93)
Jjk Isotropic J-coupling 0 Hz
bjk/2p Dipole–dipole coupling �3.166 kHz

(ajk
PM;b

jk
PM; c

jk
PM) DD principal axis orientation (0,0,0)

(aj
PM;b

j
PM; c

j
PM) CSA principal axis orientation (�66.7�,77.3�,4.0�)

(ak
PM;b

k
PM; c

k
PM) CSA principal axis orientation (�77.7�,11.0�, �9.1�)

B0 Static magnetic field 9.39 T
xr/2p Spinning frequency 11.000 kHz
xnut/2p Rf nutation frequency 110.0 kHz

The isotropic shifts are relative to the rf reference frequency. The Euler angles indicate the relative orientations of the tensor principal axis systems and a
common molecular reference frame.
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Fig. 5. Experimental double-quantum-filtered signal amplitudes for
[9,10-13C2]-all-E-retinal obtained using the R209

2 pulse sequence at a
spinning frequency of xr/2p = 11.00 kHz. (a) Symmetric acquisition
protocol, with both recoupling intervals varied, s = sexc = srec. The solid
grey curve is the best fit to Eq. (38). (b) Asymmetric acquisition protocol,
with srec fixed at 400 ls and sexc varied. The solid grey curve is the best fit
to Eq. (39).
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In summary, the numerical simulations given here show
that the analytical formula may be used reliably to predict
the double-quantum-filtered signal for 13C2-labelled solids,
even in the presence of rather large chemical shift anisotro-
pies. However, a deviation in the rf field from the nominal
value leads to a proportionate deviation in the estimated
dipolar coupling from the true value.

6. Experimental results

A sample of [9,10-13C2]-all-E-retinal was obtained as
a by-product in the synthesis of [9,10-13C2]-11Z-retinal
[44]. The experiments described below were performed
on a Varian Infinity + spectrometer, using 30 mg of
10% labeled [9,10-13C2]-all-E-retinal powder packed into
a 4mm zirconium oxide rotor, spinning at 10.00 kHz in
a magnetic field of 9.39 T (400 MHz proton Larmor
frequency).

Longitudinal 13C magnetization was generated by
ramped cross-polarization [34] of duration 1.6 ms from
the abundant 1H nuclei, followed by a p/2 pulse with a
p/2 phase shift. Double-quantum dipolar recoupling was
accomplished using a sequence with the symmetry R209

2

based on the element R0 ¼ 900270180. The 13C nutation fre-
quency was 100.0 kHz during the recoupling sequences.
Proton decoupling was not applied during the 13C recou-
pling. A SPINAL-64 [45] proton decoupling sequence
applied at 80 kHz was used during 13C signal acquisition.
In all cases, the double-quantum-filtered 13C signal ampli-
tudes were estimated by integrating the spectral peaks.
These amplitudes were normalized against peak integrals
from an equivalent cross-polarization experiment, without
double-quantum filtration. The confidence limits on each
experimental point were estimated by integrating several
signal-free spectral regions of the same frequency band-
width as that used for estimating the peak integrals. The
standard deviation of these noise integrals were taken as
the experimental confidence limits (shown by the error bars
in Fig. 5).
Fig. 5a shows experimental double-quantum-filtered sig-
nal amplitudes for the symmetric protocol, with sexc and
srec incremented simultaneously from 0 to 2.36 ms in steps
of 60 ls. The maximum double-quantum filtering efficiency
was about 40%. The grey line in Fig. 5a shows the best fit
of the function

AF symm
DQ ðhÞ expf�2s=T decayg ð38Þ

where h depends on the dipolar coupling and s according to
Eq. (35), the function F symm

DQ is given by Eq. (36), the scaling
factor jj2�122j is fixed to the value 0.1743, and bjk and
Tdecay are fit parameters. The best fit curve has the param-
eters jbjk/2pj = 2.845 kHz, A = 0.56 and Tdecay = 1.88 ms.
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The low value of A reflects an unexplained overall loss in
the double-quantum-filtered signal. This is a common
observation when performing recoupling experiments at
moderately high spinning frequencies, and is tentatively
attributed to imperfect heteronuclear decoupling and
radiofrequency imperfections.

Fig. 5b shows experimental results for the asymmetric
protocol, with srec fixed at 400 ls. The grey line in
Fig. 5b shows the best fit of the function

AF DQðhexc; h recÞ exp �ðsexc þ srecÞ=T decay

	 

ð39Þ

where Tdecay was fixed at 1.88 ms and FDQ is given by Eq.
(30). The angles {hexc,hrec} depend on the dipolar coupling
and the intervals {sexc,srec} according to Eq. (27). The best
fit curve has the parameters jbjk/2pj = 2.863 kHz and
A = 0.63.

The analytical curves fit the experimental data quite
well, although the experimental data displays somewhat
larger dipolar oscillations compared to theoretical expecta-
tions. This phenomenon is not fully understood but may be
associated with anisotropy in the cross-polarization.

The confidence limits on the determined dipolar
coupling are determined by the noise on the experimental
signal amplitudes and the uncertainty in the applied rf
nutation frequency. The rf error term dominates in this
case. We estimate the uncertainty in the nutation frequency
to be around ±3%. From Fig. 4, the estimated value of the
dipole–dipole coupling is also subject to �3% uncertainty.
The estimated dipole–dipole coupling is therefore
bjk/2p = �2.85 ± 0.09 kHz.

If motion and J-anisotropy is neglected, the dipolar cou-
pling may be converted into an estimated internuclear dis-
tance. In the present case, this leads to an internuclear
distance estimate of 138 ± 1 pm. The X-ray crystallograph-
ic estimate for the same substance is 134.5 pm [46]. The dis-
crepancy between the NMR and X-ray estimates of the
internuclear distance in this compound is therefore
3.5 ± 1 pm, with the NMR distance estimate being the
larger one. This small discrepancy in the distance estimates
for the two techniques is typical for 13C–13C internuclear
distances in organic compounds [16].

7. Conclusions

We have derived closed analytical solutions for the pow-
der-average signal amplitudes involved in c-encoded dou-
ble-quantum recoupling experiments. These solutions
may be evaluated much more rapidly than explicit spin
dynamical calculations, which greatly facilitates the deter-
mination of dipole–dipole coupling constants from experi-
mental data. The analytical formulae were applied to a
dipole coupling estimation for the 13C2 spin pairs in
[9,10-13C2]-all-E-retinal. The dipolar coupling estimate cor-
responds to an internuclear distance which is within 4 pm
of the X-ray value.

Similar analytical expressions may be derived for other
c-encoded recoupling problems, such as magnetization
transfer curves under rotational resonance [25,26], and
sideband-matched Hartmann–Hahn cross-polarization
[47–49]. Even the Hamiltonian of isolated spin pairs in
static solids has a c-encoded form, due to the rotational
symmetry around the static magnetic field. The analytical
form of the free-induction decay in static powders
containing isolated spin-1/2 pairs also involves Fresnel
functions [41].

A word of caution: each technique has its own sensitiv-
ity to interference from extraneous spin interactions, and to
experimental imperfections. The analytical formulae
should therefore never be applied blindly without perform-
ing test simulations in the regime of interest.
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